Research On
Contemporary Issues in
MEDIA RESOURCES AND INFORMATION
AND COMMUNICATION
TECHNOLOGY USE

A Festschrift
in Honour of
PROFESSOR IYABO
MOTOLAGBE MABAWONKU

Edited by
WOLE MICHAEL OLATOKUN
AMOS OYESOJI AREMU
AIREN ADETIMIRIN
Research On Contemporary Issues in
MEDIA RESOURCES AND INFORMATION AND COMMUNICATION TECHNOLOGY USE

A Festschrift in Honour of

PROFESSOR IYABO MOTOLAGBE MABAWONKU

Edited by
WOLE MICHAEL OLATOKUN
AMOS OYESOJI AREMU
AIREN ADETIMIRIN
CONTENTS

Profile ix – x
Foreword xi – xii
Preface xiii – xiv

Section 1: ICT, Big Data, Social Media and Libraries
1.1 Information and Communication Technology (ICT) Deployment in Academic Libraries in South-West, Nigeria - Olatokunbo Christopher Okiki and Adefunke O. Alabi 1 – 19
1.2 Big Data and the Emerging Role of Libraries - Oluwaseun I. Obasola 20 – 38
1.3 Big Data and Library Management: Opportunities and Challenges for Librarians - Priti Jain 39 – 57
1.4 Social Media Use in Libraries: Current Trends, Challenges and Evolving Directions - Oluyomi Folorunso 58 – 78
1.5 Relationship between Social Media Use and Use of Electronic Library Resources by Undergraduates in Federal Universities in South-West, Nigeria - Adefunke Ebijuwa 79 – 98

Section 2: Information Ethics and Library and Information Science Education
2.1 Educating Library and Information Science Students for an Ethical Information Age - Airen Adetimirin 99 – 112
2.2 Predictors of Academic Dishonesty among Postgraduate Students in Southwest Nigeria - Oyesoji Amos Aremu, Adetola Olubisi Adeyemi and Nkechi Ozurumba 113 – 128
2.3 Closing Pandora’s Box: Educators’ Role in Building the Capacity of Students for Plagiarism Avoidance in Nigerian Library Schools - Olawale Oyewole 129 – 140
2.4 Faculty Learning Communities: A Model for Enhancing Library and Information Science Education in Nigeria - Saheed Abiola Hamzat 141 – 150

Section 3: Institutional Repositories, Cloud Computing and Mobile Libraries
3.1 Marketing Institutional Repositories in University Libraries in Ghana - Emmanuel Adjei, Monica Mensah and Ebenezer Martin Yeboah 151 – 177
3.2 Bridging the Gap between Academic Traditional Libraries and Open Access through an Integrated Cloud Computing in a Quasi Information Society

- Wole Olatokun and Ojinga Gideon Omiunu

3.3 Cloud Computing for University Libraries: The Security Dilemma

- Samuel Owusu-Ansah

3.4 Examining the Realities of Cloud Computing Adoption and Application in Nigerian Libraries and Information Centres - 'Niran Adetoro and Philips Oluwaseun Ayeni

3.5 Cloud Computing Technology: Tool for Law Library Services in Nigeria - Jide Owoeye

3.6 Facilitating Learners' Access to and Use of Library Resources in Nigeria: the Option of M-Libraries

- Olajide, Olumide Ephraim and Oludeyi, Olukunle Saheed

3.7 Information and Digital Literacy and Technology Appropriation in Electronic Media

- Kolawole Akinjide Aramide, Fadekemi Omobola Oyewusi and Deji Theophilus Adebibyi

Section 4: Library Education, Open Educational Resources and Distance Learning

4.1 Involvement of Academic Librarians in Open Educational Resources Initiatives in Nigerian Universities

- Yetunde Abosede Zaid

4.2 Library and Information Support Service for Open and Distance Learning: Lessons for the Nigerian Situation

- Olugbade Oladokun

4.3 Integrating into a Global Learning Community: Emerging Perspectives for Enhancing the Interaction Discourse in Distance Learning Pedagogy

- Ojokheta, Kester Osegha, and Abiola Adiat Omokhabi

4.4 Media of Open Distance Learning and Quality Assurance in Open Distance Learning - Rashid Adewumi Aderinoye

Section 5: School Library Media Personnel and Job Performance

5.1 Organisational Commitment, Job Status and Job Experience as Determinants of School Library Media Personnel’s Job Performance in Federal Unity Schools in
Section 6: Knowledge Production and Open access Publishing

6.1 Information and Communication Technology Skills and Editorial Competence as Factors Influencing Quality Textbook Production by Publishers in South-West, Nigeria - Clement Adeniyi Akangbe 368-387

6.2 Knowledge Production Ethos and Open Access Publishing: Africa in Focus - Williams Nwagwu 388-420

Section 7: Archives, Records and Information Management

7.1 Archives, Memory, Governance and Technology: a Reflection on the State of Heritage Preservation in Nigeria - Abiola Abioye 421-434

7.2 Medical Records in Historical Perspective: from Antiquity to the Information Age - Emmanuel Adjei and Monica Mensah 435-453

7.3 Health Information Management: Evolution, Development and Technology - Benson Macaulay Oweghoro 454-464

7.4 Assessment of Preservation of Preservation Practices at Lagos State House of Assembly Library - Anyaogu Uluocha 465-479

Section 8: Gaming and Students Achievement

Index 521-533
Big Data and the Emerging Role of Libraries

Oluwaseun I. Obasola

Abstract

Technological advancement has led to a massive increase in the amount of data being generated and accumulated daily. As a result, libraries no longer manage only print collections. They are also involved in managing materials that are born digital from an ever-growing range of sources using new technologies. This has led to the emergence of big data and new services in libraries. As the library's tradition changes, so also the research landscape changes. How is the library responding to this contemporary challenge for research? This chapter presents an overview of big data projects involving libraries. Some publications on big data projects were retrieved from databases such as LISTA and Google. Relevant websites and blog post were also consulted. The discussion focused on the emergence of big data and the library's emerging role in the research landscape. The review reveals the libraries' engagement with big data and challenges encountered, and recommends ways of addressing these challenges.

Introduction

The term 'Big data' is not a new term. Its existence dates back to 19th Century (1941) during the information explosion era when information leapt in bundles. Although the concept was not tagged with a name, there was an attempt to quantify the growth rate of the volume of data generated. In 1999, the term was officially tagged in a publication titled 'Visually Exploring Gigabyte Datasets in Real Time' by the Association for Computing Machinery. The following year (2000), Francis X. Diebold's presentation at the Eighth World Congress of the Econometric Society in the United Kingdom described the concept as an "... explosion in the quantity of available and potentially relevant data, largely the result of recent and unprecedented advancements in data recording and storage technology." (B. Marr, 2015; G. Press, 2016).

According to some authors (L. Doug, 2001; M. Hilbert, 2015), 'Big data' is a concept with five attributes: volume, velocity, variety, veracity, and value. The first attribute – volume – refers to the size of the data being generated every day. As noted by the International Business Machines blog (R. Jacobson, 2013), "Every day, we create 2.5 quintillion bytes of data......" implying that a significant amount (90%) of data in the world today was created in the last two years alone. The second attribute – velocity – refers to the rate at which the data is being generated every second, and variety is about the type of data being generated and the lack of uniformity in the data structure. Veracity refers to the disorderliness or trustworthiness of the data, the value is the profit or benefit that can be derived from big data.
In Hoy's (2014) perspective, while data in simple term is the idea that computers can collect an enormous amount of information about billions of different things and find useful patterns in that information. With big data technology, information can be stored and used to make intelligent decisions for the good of the society. This is made possible with the help of distributed systems, stored in different locations, connected by computer networks. Some examples of big data generated every day include Twitter and Facebook posts, WhatsApp chats, call logs, student records, customer transaction details in supermarkets or banks, video clips on Youtube, pictures on Flickr, libraries’ collection, factory production activities surveillance and navigation systems (Mutula, 2016).

In the library setting, big data refers to its ever-growing collections. Each information product in the library is data to a potential researcher depending on the context and the nature of the investigation. For example, a researcher using relevant articles in online academic databases for a systematic review or text mining changes the conceptualisation of published articles as research output to research datasets for scientific enquiry. Likewise, research outputs such as pictures, video clips and audio recordings from a particular investigation can also be re-used by another researcher in a different context as research dataset; hence, the description of big data in the library as information products such as print materials and electronic resources, like e-journals, e-books, library catalogues, images/pictures, magazines, qualitative/quantitative datasets, repositories and digitised materials. Others include those materials that are born digital like usage statistics, user details, chat on a library’s social media platforms (blogs, Facebook page, twitter), video files, audio files and transaction logs with suppliers and publishers.

Zhan and Widen (2017) in their paper titled ‘Understanding big data in librarianship’ described the term (big data) as data sets with large size and fast-growing speed in different file formats which can complicate data handling techniques but can also boost the creation of technological solutions. Dumbill's(2013) description of big data as a complex dataset that cannot be processed using the conventional database systems indicates that more advanced systems are needed to derive substantial benefit from big data. Some of the tools used for big data analytics include Hadoop and Mahout. The application of these tools to harness the potential of big data has resulted in a shift in scientific practice leading to the advent of e-research, implying that big data underpins e-research (Emmot, 2006).

Gray’s definition of e-research as a concept that exploits technologies for computation, data curation, analysis, visualisation and collaboration highlights the complexity involved in using big data for research. It also reveals the magnitude of issues surrounding the management, storage and preservation of big data. This calls for collaboration by research libraries, researchers, universities, funders, software and hardware technologists, national organisations and policymakers to harness the opportunities it offers (Soehner, Steve and Ward, 2010). This implies that the library has to
take on a new role in the research arena, changing the library's role into Library 4.0, a smart library that can analyse user needs and present findings intelligently. As such, big data is considered an essential concept for the development of future libraries (Noh, 2015).

As the scholarly culture moves towards online research, allowing investigations to cross disciplinary boundaries, there is a need to explore the role of libraries in big data analytics. What are the emerging roles of librarians and libraries in big data analytics? This paper presents some big data initiatives that have emerged amongst stakeholders to highlight the library's response to the change in the research landscape (Charles Henry, 2012). The study presents an overview of libraries' involvement in big data initiatives across the globe. It provides answers to the following research questions:

- What are the existing big data projects involving libraries?
- What are the emerging and current roles of librarians/libraries?
- What are the challenges of the emergence of big data in e-research?

Methods

The study procedure followed the review plan recommended by (T. Dyba, T. Dingsoyr, and G. K. Hanssen, 2007). The approach involved the following:

- Definition of search terms and strategies
- Identifying data source (databases) for literature search
- Literature searching using search terms and strategies
- Selection of relevant studies.

Search Strategy

To cover a wide range of publications in Library and Information Science (LIS), data sources such as Google and LISTA were used for literature searching. Relevant journals such as big data journal and blog posts on big data were also consulted. These data sources were selected to cover a significant proportion of relevant publications; as they were identified as relevant academic databases. Google search engine was included to ensure that all relevant documents were retrieved since most data sources are indexed by Google.

To ensure the search terms retrieve relevant articles for the study, the researcher and the research assistants tested the search terms developed using some pilot searches and the results obtained were vetted by other information professionals at the British Library in London and University of Ibadan Library System in Ibadan, Nigeria. Based on the research questions and initial searches during the planning stage, the following search strings were found suitable for the study:

'big data and librar*'
'data and librar*'
To construct the search string, all the search terms were combined by using ‘AND’ Boolean operator. The conjoining method was used to ensure the retrieval of relevant publications only. The search was conducted on the title and the abstract, to avoid missing out relevant publications.

Inclusion and Exclusion of Studies

Some of the studies retrieved were still irrelevant to the focus of the study despite the appearance of the keywords in the title or the abstract. Afterwards, a manual sorting of the publications retrieved was conducted to retain only publications which are relevant to the study. Only articles written in English language were selected for the review. Publications that met any of the following criteria were included in the review:

- Reports or Powerpoint presentation on big data projects involving libraries or librarians
- Studies that focus on big data projects involving libraries
- Studies that describe big data projects and highlighting the role of librarians/libraries.

Publications that do not meet the above criteria were excluded. Those excluded were:

- Studies that only mention the search term, but does not focus on big data project
- involving libraries; and
- Studies that focused on big data in general (projects that do not involve the library).

The protocol for identifying primary studies for this study was initiated in November 2016 and concluded at the end of November 2017. The search was limited to publication after 2000 up to 2017. The year 2000 was selected as a delimiter because preliminary search revealed no significant publications before this date.

These steps resulted in twelve citations which make up the final set of primary studies used for the investigation. For details on the search details and procedure for identifying the primary studies, see Tables 1-2 and Figure 1.
<table>
<thead>
<tr>
<th>Database</th>
<th>Search String</th>
<th>Preliminary Articles Retrieved</th>
<th>Result after Reviewing the Title and the Abstract</th>
<th>Final Articles Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google</td>
<td>big data and librар* data and librар*</td>
<td>400</td>
<td>45</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>data science and librар*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e-science and librар*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data project and librар*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>big data projects and librар*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data initiatives and librар*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>big data initiatives and librар*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LISTA</td>
<td>big data and librар*</td>
<td>321</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>data and librар*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data science and librар*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e-science and librар*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data project and librар*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>big data projects and librар*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data initiatives and librар*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>big data initiatives and librар*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data Extraction and Analysis

Electronic templates were used in extracting data from the 12 studies retrieved. The data extraction template was pre-tested with the first five studies included in the review and adjusted as considered necessary. Data extracted using the templates are highlighted as follows:
Findings of the Study

The author retrieved 45 eligible citations from Google (including one citation each from three websites and a blog) and seven citations from LISTA. The author with the support of research assistants screened 52 citations. These abstracts were screened for potential relevance, using the big data project aim, activities and stakeholders. This resulted in the twelve studies included in the study.

Description of the Identified Projects

Twelve projects that met the inclusion criteria were used for the review. All the studies focused on big data projects involving libraries. Four out of the twelve projects focused on developing data management policy and integrated tools to support researchers through the data life cycle when conducting research (Johnsson and Åhlfeldt, 2015; Oakleaf and Brown, 2017; Strasser, Wright, and Steinhart, 2014; Van Deventer and Pienaar, 2015); three (CERL, n.d.; Heather Christenson, 2010; Johnson, 2017) were on preservation and archiving of large-scale multi-discipline data; the goals of two projects were to develop tools and interfaces for data extractions by researchers or policymakers (Baker, 2014; CERL, n.d.; Heather Christenson, 2010), one project was still at the initiation stage at the time this study was conducted (EIFL, 2016a) and the ODE (Opportunity for Data Exchange) project focused on an investigation of research data services in Europe. The projects were implemented in seven countries, namely the United States, the United Kingdom, Germany, Ghana, Singapore, South Africa and Australia (See Table 2 for more information about the projects). Forty potential papers on big data projects retrieved were excluded at full-text screening because the papers only mentioned the search term but did not involve any library as part of the project stakeholders.
Discussion

Libraries and Librarians Engagement with Big Data

The studies reviewed show that libraries are important stakeholders in big data projects. Johnsson and Åhlfeldt’s (2015) report on DAMARO project focusing on data from various disciplines at the Bodleian Libraries, University of Oxford in the United Kingdom highlights the role of libraries in big data initiatives. The authors reported that libraries in the UK had been involved in: training of researchers to be data-aware, development of data curation tool kits (a set of templates helping researchers to structure the data workflow), and long-term preservation of data for re-use. Researchers need all of these services to meet up with the funders’ requirement for data retention to ensure sharing and reuse of datasets for further research and other purposes in society.

Besides the libraries’ role of digitising and archiving materials for long-term use, two of the studies reviewed by Baker (2014) and Heather (2010) showed that librarians in the bid to support researchers are now involved in the development of data management policy, investigator’s toolkit and data models or frameworks for application software that promote easy access to datasets. Libraries also offer advisory role on metadata profile, an appropriate file format for datasets and organisation of datasets. Librarians likewise collaborate with other professionals to improve access to datasets through data extraction interfaces (Resources, 2014). This finding confirms previous reports which revealed that the rise of big data in research has created opportunities for libraries and librarians to be involved in advocacy for open access, setting metadata standards, managing data repositories and data literacy programs (Mary and Mavrinac, 2010; Rani, n.d.).

Except for the project in Ghana-Africa Public Libraries Data Project (EIFL, 2016a) which was solely library-based, all the other big data projects were multidisciplinary involving librarians, computer scientists, researchers, policymakers and publishers. Implying that the management of big data is multidisciplinary in nature because institutions and libraries need to store data from various disciplines for long-term use. This finding is in line with Jahnke, Asher and Spencer, (2012) endorsement of the library as an ideal location to create spaces for business professionals, academics, data scientists, IT specialists and graduate students working with a variety of data (information products) in compliance with approved standards for the benefit of the society.

The literature search retrieved only two documents on big data projects involving libraries in Africa (South Africa and Ghana). While the first project in South Africa focused mainly on the development of data management policy and repositories to support the use of data, the latter which involves data collection on public libraries in Africa was still at the initiation stage at the time the literature search was conducted. This is unlike Johnsson and Åhlfeldt report in the UK which revealed that most libraries in Europe (9 out of 13 cases in League of European Research libraries) are involved in data
management. Other authors also got similar reports in the US, Australia, South Africa and Singapore (Choudhury and Hanisch, n.d.; Heather Christenson, 2010; Johnson, 2017; Resources, 2014). Indicating that libraries in the developed countries are actively involved in the management of data in academic institutions and at the national level, it also revealed that the emergence of big data promotes the library's expertise in collection development and preservation of research datasets and other information products from research. According to the studies reviewed, libraries in the developed countries could take part in big data projects because of the funding and support received from funders and national research bodies (government) in each country. Libraries in the developing countries require similar support to survive the change in the research terrain.

Challenges of Big Data in Libraries

The studies reviewed have revealed some challenges of big data. Fuller (2015) and Zhan and Widen (2017) identified the development of meta-data templates as an issue with big data. The authors reported that due to the variety attribute of big data, developing a formal meta-data standard for big data is difficult because the formal dataset modelling processes are not applicable to big data. This makes the organisation, accessibility and managing of big data for use/re-use complex. This difficulty with managing big data was also acknowledged at the University of Pittsburgh (2007) with other challenges such as data capture, storage, timeliness, sharing, incompleteness, scalability and security issues.

Another challenge identified by this review is the need to adequately monitor big data analytics to avoid misleading correlation among data sets. Big data can misrepresent valid results or trends from data drawn from many sources. An example is the Flu Trends project by Google which exaggerated flu outbreak in over 25 countries in 2008. This review also acknowledges that the application of big data for e-research requires new skill sets and tools. The demand for data librarians is growing every day, and there are few professionals in the industry to fill the gap. Mutula in 2016 also reported this skill gap. Consequently, librarians need to acquire knowledge about big data analytics tools and develop data literacy skill to support users. Otherwise, the challenge may limit libraries involvement in big data analytics (Gordon-Murnane, L. 2012). To address this challenge, Library Schools in the United States and organisations in the United Kingdom have developed courses aimed at equipping information scientists with the requisite skill sets in data science, system analysis, data mining and programming, Artificial Intelligence, and more (Penn, nd; SAS Academy).

Besides the challenge with the skill gap and metadata standards, the studies reviewed also shows issues with data privacy or ownership of data, and the infrastructure to support big data in libraries. Because big data systems can collect an enormous amount of data about people, activities or an object, there is the possibility for damaging disclosure which may not be intentional on the part of the organisation holding the data. Many hackers work
tirelessly to break into data banks of prominent organisations; and once they succeed, there will be data breaches and a loss to such organisations and their customers (Hoy, 2014).

Conclusion and Recommendation

This review has shown that libraries and librarians have an essential role to play in managing big data and the delivery of other data services. As the demand for data services grows, librarians need to gain data curation and literacy skill sets to meet up with the need for data librarians. Library schools need to include training on data management in its curriculum to fill the skill gap in the information industry. Library schools may also have to collaborate with data centres in research institutes or academic institutions to evolve training modules on data management to equip future librarians with the required skills and tools for data services.

Librarians likewise need to collaborate with other professionals to develop data standards and metadata profile to support long-term preservation of data for knowledge creation in the emerging information terrain.

To ensure the use of big data is appropriately monitored to maximise its gains, librarians and libraries need to get involved in offering data advisory services to promote healthy use of data, and educating data users on the implication of data abuse or breaches. Governments and institutions need to support libraries and other knowledge organisations to evolve data standards and policies that will improve the use of big data in businesses and researches and promote healthy data sharing to maximise the gains of big data in different sectors of the society.
References

https://doi.org/10.1080/02763869.2014.925709
https://doi.org/10.1080/24750158.2017.1356982
https://doi.org/10.1045/september12/mayernik

Oluwaseun Obasola is the System Librarian at E. Latunde Odeku Medical Library, College of Medicine, University of Ibadan, Oyo State, Nigeria. She holds a Bachelor of Science degree in Computer Science with Economics from Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria; a Master's degree and PhD in Library, Archival and information Studies from the Library School, University of Ibadan, Oyo State, Nigeria.
Table 2: Overview of Big Data Projects Involving Libraries

<table>
<thead>
<tr>
<th>No</th>
<th>Project Title and Initiation Date</th>
<th>Project Objective(s)</th>
<th>Stakeholders</th>
<th>Location</th>
<th>Outcome</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>DAMARO 2011-2013</td>
<td>Development of data management policy and integrated tools to support researchers through the data life cycle</td>
<td>Bodleian Library, University of Oxford and JISC(Joint Information Systems Committee)</td>
<td>United Kingdom (UK)</td>
<td>Data Policy Integrated tool for Data management</td>
<td>(Johnsson and Åhlfeldt, 2015)</td>
</tr>
<tr>
<td>2.</td>
<td>Purdue Library Data Project 2000</td>
<td>To develop a set of templates (a data management plan) that will help researchers to structure the data workflow in research</td>
<td>Purdue University Library and International Museum and Library Services (IMLS)</td>
<td>United States (US)</td>
<td>Data Curation Profiles Toolkit</td>
<td>(Oakleaf and Brown, 2017; Reinhalter and Wittman, 2014; Zilinski et al, 2016)</td>
</tr>
<tr>
<td>3.</td>
<td>DataONE Project 2009</td>
<td>The goal of the project is to preserve and provide access to multi-scale, multi-discipline, and multi-national data. Stakeholders The project provides scientific data archiving for ecological and environmental data produced by scientists.</td>
<td>National Science Foundation, NSF Computer and Information Science and Engineering Directorate (CISE), NSF INTEROP Programs, Leon Levy Foundation, National Aeronautics and Space Administration (NASA), Microsoft Research, Gordon and Betty Moore</td>
<td>US</td>
<td>Data Primer Librarian Outreach Toolkit Investigator Toolkit</td>
<td>(GSLIS Center for Informatics Research in Science and Scholarship (CIRSS) the University of Illinois, n.d.; Strasser, Cook, Michener, and Budden, 2012; Strasser, Wright, and Steinhart, 2014)</td>
</tr>
<tr>
<td>No</td>
<td>Project Title and Initiation</td>
<td>Project Objective(s)</td>
<td>Stakeholders</td>
<td>Location</td>
<td>Outcome</td>
<td>Authors</td>
</tr>
<tr>
<td>----</td>
<td>------------------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>4</td>
<td>HathiTrust Digital Library, 2008</td>
<td>The project focuses on large-scale digitization of the 'big data' in 25 libraries to ensure long-term preservation of their content.</td>
<td>University of Michigan, Indiana University, libraries of the Committee on Institutional Cooperation, University of California and the University of Virginia</td>
<td>US</td>
<td>A Digital Library preserving and archiving the holdings of 25 libraries</td>
<td>(Heather Christenson, 2010; Mcdonald, 2015; York, 2009)</td>
</tr>
<tr>
<td>5</td>
<td>Data Conservancy Project</td>
<td>The goal of the project is to broaden data infrastructure development and gain better understanding of the challenges in collecting, preserving and curating different types of research data.</td>
<td>Sheridan Libraries at Johns Hopkins University Sloan Digital Sky Survey data and US National Virtual Observatory</td>
<td>US</td>
<td>A data-centric architecture, discipline-agnostic data model and a data feature extraction framework that facilitates data integration and cross-disciplinary queries</td>
<td>(Choudhury and Hanisch, n.d.)</td>
</tr>
<tr>
<td>Date</td>
<td>Title</td>
<td>Organization/Project</td>
<td>Country</td>
<td>ODE website</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
<td>---------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. ODE OPPORTUNITIES FOR DATA EXCHANGE 2010</td>
<td>To investigate emerging best practices in sharing, re-using, preserving and citing data, the drivers for these changes and barriers impeding progress</td>
<td>European Organization for Nuclear Research (CERN), Alliance for Permanent Access (APA), CSC - IT Centre for Science, Alfred Wegener Institute for Polar and Marine Research (AWI), Science and Technology Facilities Council (STFC), The British Library, German National Library, Association of European Research Libraries (LIBER), and International Association of Scientific, Technical and Medical Publishers (STM)</td>
<td>Germany</td>
<td>Three reports, 1. Ten Tales of Drivers and Barriers in Data Sharing 2. Integration of Data and Publications 3. A final report on the project</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Digital South Asia Library</td>
<td>University of Chicago, the Centre for Research Libraries, academic institutions, libraries and organisations in the US, Europe, South Asia</td>
<td>US</td>
<td>Digital Library providing access to rare materials on South Asia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>To provide access to important and rare resources on South Asia to scholars, public officials, business leaders, and other users</td>
<td>(CERL, n.d.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Project Title and Initiation Date</td>
<td>Project Objective(s)</td>
<td>Stakeholders</td>
<td>Location</td>
<td>Outcome</td>
<td>Authors</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>8.</td>
<td>Africa Public Libraries Data Project 2016</td>
<td>The aim of the project is to gather data about the presence, use, services and resources of public and community libraries in Africa. It seeks to develop research methods for sustainable and ongoing data collection about public and community libraries in Africa.</td>
<td>EIFL (Electronic Information for Libraries), African Library and Information Associations and Institutions (AfLLA) and the Technology and Social Change Group, University of Washington Information School (TASCHA),</td>
<td>Ghana</td>
<td>Project is still at the initiation stage.</td>
<td>EIFL Website (EIFL, 2016b)</td>
</tr>
<tr>
<td>9.</td>
<td>British Library Big Data Experiment 2014</td>
<td>The focus is to open up digital collections at the British Library to researchers in Arts and Humanities.</td>
<td>British Library, UCL Computer Science, and UCL Centre for Digital Humanities</td>
<td>UK</td>
<td>Platforms or interfaces that link researcher and allow interrogation of BL’s public domain digital collections using the Microsoft Azure cloud infrastructure</td>
<td>BL’s blog (2014) (Baker, 2014)</td>
</tr>
<tr>
<td>10.</td>
<td>Shell Australia Technical Library</td>
<td>To develop a Geophysical Database Management</td>
<td>Shell Library staff and Technical Data</td>
<td>Australia</td>
<td>Robust Database for storing and managing</td>
<td>(Johnson, 2017)</td>
</tr>
<tr>
<td>Year</td>
<td>Project Name</td>
<td>Objective</td>
<td>Organization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>System Management Team</td>
<td>Involving geophysical data analysts, geological data analysts, IT specialists, project managers and workflows/applications specialists</td>
<td>Geophysical data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>Singapore Library Data Mining</td>
<td>To optimize the library's collection to improve access to information resources using big data technology (Hadoop)</td>
<td>A title recommendation service that offers more relevant data to its users via its websites; Mining of reading patterns based on the libraries' past records; Enhancement of the search and discovery experience of users and improvement in the use of digitised resources.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project</td>
<td></td>
<td>(Resources, 2014)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>SARIS Project</td>
<td>Improve access to electronic research literature</td>
<td>Data management policy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Data repository</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Van Deventer and Pienaar, 2015)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and the Network of Data and Information Curation Community (NDICC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>